@ TECHNOXAMM
v Guide for way to Learn

C Programming

Page | 1

TECHNOXAMM

Guide for way to Learn

Syllabus

Content Page No
Introduction to Programming 3-6
Types of Programming Languages 7-9
Introduction to C Language 10 - 15
Introduction to IDE 16 - 17
Language Elements 18 - 23
Operators 24 - 31
Control Statements — if and switch 32 -48
Looping Structures 49 - 66
Characters in C 67 -70
Arrays 71 -81
Multidimensional Arrays 82 - 86
String Handling 87 - 94
User-defined functions 95-111
Pointers 112 - 123
Pointer notation vs. Array notation 114-119
Structures 120 - 124
Unions, Typedef and Enumeration 125-132
Pre-processor commands 133 - 146
File Handling 138 - 147
Command Line Arguments 148 - 149
Dynamic Memory Allocation 150 - 153
Linked List 154 - 162

Page | 2

TECHNOXAMM

Guide for way to Learn

Introduction to Programming

A computer is a programmable electronic device that accepts raw data
as input and processes it with a set of instructions (a program) to
produce the result as output. It renders output just after performing
mathematical and logical operations and can save the output for future
use. It can process numerical as well as non-numerical calculations. The
term "computer" is derived from the Latin word "computare" which
means to calculate.

A computer program is the process that professionals use to write code
that instructs how a computer, application or software program
performs. At its most basic, computer programming is a set of
instructions to facilitate specific actions.

The basic components of a computer are:

1. Input unit
2. Central Processing Unit(CPU)
3. Output unit

Page | 3

TECHNOXAMM

Guide for way to Learn

The CPU is further divided into three parts-

e Memory unit
e Control unit

e Arithmetic Logic unit

MASS
STORAGE

RAM/ROM
INTERMAL MEMORY

|
| |
| |
| |
| |
| |
B |
INPUT OUTPUT
> —
UNIT ! l i UNIT
| |
|| CONTROLUNIT | |
|
| |
| 4 |
| |
| |
| |
| ALU |
|
| |
| |
| |
[P e e R e e |

A High-Level Language (HLL) is a programming language such as C,
FORTRAN, or Pascal that enables a programmer to write programs that
are more or less independent of a particular type of computer. Such
languages are considered high-level because they are closer to human
languages and further from machine languages

A Low-Level Language (LLL) is a programming language that
provides little or no abstraction of programming concepts and is very
close to writing actual machine instructions. Two examples of low-level

languages are assembly and machine code.

Page | 4
|

TECHNOXAMM

Guide for way to Learn

An Assembly language is a low-level programming language designed
for a specific type of processor. It may be produced by compiling
source code from a high-level programming language (such as C/C++)
but can also be written from scratch.

Programming Language Hierarchy

High — Level Language (HLL)

Assembly Language

Machine Language

Hardware

A compiler is a program that reads a program written in the high-level
language and converts it into the machine or low-level language and
reports the errors present in the program.

It converts the entire source code in one go or could take multiple passes
to do so, but at last, the user gets the compiled code which is ready to
execute. The returned target code file can be run with many different
inputs, over and over. the compiler doesn’t need to be around for any
subsequent reruns.

Page | 5
|

TECHNOXAMM

Guide for way to Learn

Source Program

—
-

Target Program

-
Cal

Error Messages

An interpreter is a computer program that is used to directly execute
program instructions written using one of the many high-level
programming languages.

The interpreter transforms the high-level program into an intermediate
language that it then executes, or it could parse the high-level source
code and then performs the commands directly, which is done line by
line or statement by statement.

—
1 Line of
High Level . Output
Source (Temporary)

Code > Interpreter

—_— — Stop:
Error Report

Page | 6

TECHNOXAMM

Guide for way to Learn

Types of Programming Languages

TYPES OF PROGRAMMING

l v v
5 f | S
Procedural Programming Object-oriented gy, Logic
Languages programming Language j 1) Programming

v \4
Functional Programming Scripting Programming
Languages Languages

Procedural Programming Language

The procedural programming language is used to execute a sequence of
statements which lead to a result. Typically, this type of programming
language uses multiple variables, heavy loops and other elements,
which separates them from functional programming languages.
Functions of procedural language may control variables, other than
function’s value returns. For example, printing out information.

Functional Programming Language

Functional programming language typically uses stored data, frequently
avoiding loops in favor of recursive functions.The functional
programing’s primary focus is on the return values of functions, and
side effects and different suggests that storing state are powerfully
discouraged. For example, in an exceedingly pure useful language, if a

Page | 7
|

TECHNOXAMM

Guide for way to Learn

function is termed, it’s expected that the function not modify or perform
any o/p.

Object-oriented Programming Language

This programming language views the world as a group of objects that
have internal data and external accessing parts of that data. The aim this
programming language 1is to think about the fault by separating it into a
collection of objects that offer services which can be used to solve a
specific problem. One of the main principle of object oriented
programming language 1s encapsulation that everything an object will
need must be inside of the object. This language also emphasizes
reusability through inheritance and the capacity to spread current
implementations without having to change a great deal of code by using
polymorphism.

Scripting Programming Language

These programming languages are often procedural and may comprise
object-oriented language elements, but they fall into their own category
as they are normally not full-fledged programming languages with
support for development of large systems. For example, they may not
have compile-time type checking. Usually, these languages require tiny
syntax to get started.

Logic Programming LLanguage

These types of languages let programmers make declarative statements
and then allow the machine to reason about the consequences of those
statements. In a sense, this language doesn’t tell the computer how to do
something, but employing restrictions on what it must consider doing.

Page | 8
|

TECHNOXAMM

Guide for way to Learn

To call these groups ” types of language ” is really a bit confusing. It’s
easy to program in an object-oriented style in C language. In truth, most
of the languages include ideas and features from various domains,
which only helps to increase the usefulness of these types of languages.
Nevertheless, most of the programming languages do not best in all
styles of programming.

Language Pascal S, O s o2 ”“s...,..
W

ALGOLPA™
7 v';"é‘.‘:*‘f.;*tk,!,,SPVB..uh -

e s ASSEemb

SperTak
G t‘* CamlZ s ECMAScript Pfobg
Oxygene P E A R I_ Progranrmng

Vistial
ial g Do
=SCptPHP. 5 ma\la

Turng ISWVIM

w&f:wat ONnJ=" =

o WATFOR

Page | 9

TECHNOXAMM

Guide for way to Learn

Introduction To C Programming

In 1972, a great computer scientist Dennis Ritchie created a new
programming language called 'C' at the Bell Laboratories. It was created
from 'ALGOL', 'BCPL' and 'B' programming languages. 'C'
programming language contains all the features of these languages and
many more additional concepts that make it unique from other
languages.

Some Facts About C Programming Language

. In 1988, the American National Standards Institute (ANSI) had
formalized the C language.

. C was invented to write UNIX operating system.

. C s asuccessor of 'Basic Combined Programming Language'
(BCPL) called B language.

. Linux OS, PHP, and MySQL are written in C.
« C has been written in assembly language

Reasons For Popularity of C Language
. Easy to learn
. Structured language
. It produces efficient programs.

. It can handle low-level activities.
. It can be compiled on a variety of computers.

Advantages of C

. C 1s the building block for many other programming languages.
. Programs written in C are highly portable.

Page | 10
|

TECHNOXAMM

Guide for way to Learn

. Several standard functions are there (like in-built) that can be used
to develop programs.

. C programs are collections of C library functions, and it's also easy
to add functions to the C library.

. The modular structure makes code debugging, maintenance, and
testing easier.

Fast and Efficient

Variety of data types

Portable
and powerful Operators

C Language

Easy to extend

Function rich
Libraries

Modularity

Disadvantages Of C

. C does not provide Object Oriented Programming (OOP) concepts.
. There are no concepts of Namespace in C.
. C does not provide binding or wrapping up of data in a single unit.

. C does not provide Constructor and Destructor.

Page | 11
|

TECHNOXAMM

Guide for way to Learn

Structure of C Program
Header File # include <stdio.h>

Main() int main()
d

Variable Declaration int a=10;

Body printf(“%d”,a);

Return return 0;

The components of the above structure are:

1. Header Files Inclusion: The first component is to include the
Header files in a C program.
A header file 1s a file with extension .h which contains C function
declarations and macro definitions to be shared between several

source files.
Some of C Header files:

stddef.h — Defines several useful types and macros.

stdint.h — Defines exact width integer types.

stdio.h — Defines core input and output functions

stdlib.h — Defines numeric conversion functions, pseudo-random
network generator, memory allocation

string.h — Defines string handling functions

e math.h — Defines common mathematical functions

Page | 12
|

TECHNOXAMM

Guide for way to Learn

Syntax to include a header file in C:
#include

sk sk sk sk skesle s sk sk sk st sfe sk sfe sk sk st sk sk sk sk sk sk skesie sl sl sk sk sk sk sk sk sk sk s sk sk st sk sk sfe sk sfeosleosie sk sk sk sk s sk sk skeoskoskosk

2. Main Method Declaration: The next part of a C program is to
declare the main() function. The syntax to declare the main
function is:

Syntax to Declare main method:
int main()

U

sk sk sk sk skeosk st sk st sk st s sk sk sk skoske st sk s s s s s skosk sk sk st sk sk s sk skosk sk sk st st st s s sk skeoskeoskosie st sk st sk sk sk skeoskoskosk

3. Variable Declaration: It refers to the variables that are to be used
in the function. In a C program, the variables are to be declared
before any operation in the function.

Example:
int main()

{int a;
TXTTLTTTLT T LT LTI ddbbbddbbbddbddbbdbbrdbbddbdbedd

4. Body: Body of a function in C program, refers to the operations
that are performed in the functions. It can be anything like
manipulations, searching, sorting, printing, etc.

Example:

int main()

{
Int a;
printf("' %d", a);

st sk sk s sfeoske sk s sk sk s sk sk sk s sk st seosk sk s sk sk st skeoske st s sk sk s sk sk s sk sk sk s sk sk s skosie s skosk st sfeosk sk skeoskosk sk skoskosk

Page | 13
|

TECHNOXAMM

Guide for way to Learn

5. Return Statement:The return statement refers to the returning of
the values from a function. This return statement and return value
depend upon the return type of the function. For example, if the
return type is void, then there will be no return statement.
Example:

int main()

{
Int a;
printf("%d", a);

return 0;

b

Lets write our 1% program in C Language

#include <stdio.h>

int main(void)

{
printf("TechnoXamm");

return O;

j

/* Program Execution Completed */

Line 1: [#include <stdio.h>] In a C program, all lines that start
with # are processed by preprocessor . In a very basic

Page | 14
|

TECHNOXAMM

Guide for way to Learn

term,preprocessor takes a C program and produces another C program.
The produced program has no lines starting with #, all such lines are
processed by the preprocessor. In the above example, preprocessor
copies the preprocessed code of stdio.h to our file. The .h files are
called header files in C. These header files generally contain
declaration of functions.

Line 2 [int main(void) | There must to be starting point from where
execution of compiled C program begins. In C, the execution typically
begins with first line of main(). The void written in brackets indicates
that the main doesn’t take any parameter. The int written before main
indicates return type of main().

Line 3 and 6: [{ and }] In C language, a pair of curly brackets define
a scope and mainly used in functions and control statements like if,
else, loops. All functions must start and end with curly brackets.

Line 4 | printf(“TechnoXamm™); | printf() is a standard library
function to print something on standard output. The semicolon at the
end of printf indicates line termination. In C, semicolon is always used
to indicate end of statement.

Line 5 [return 0; | The return statement returns the value from
main(). The returned value may be used by operating system to know
termination status of your program. The value 0 typically means
successful termination.

Line 7 [/* */]These are comment lines or in other words these line of
code are not executable by the compiler.

Page | 15
|

TECHNOXAMM

Guide for way to Learn

Introduction to IDE

An IDE, or Integrated Development Environment, enables programmers
to consolidate the different aspects of writing a computer program.

IDEs increase programmer productivity by combining common
activities of writing software into a single application: editing source
code, building executables, and debugging.

Features of using an IDE

e Editing Source Code

Writing code is an important part of programming. We start with a
blank file, write a few lines of code, and a program is born! IDEs
facilitate this process with features like syntax highlighting and
autocomplete.

e Syntax Highlighting

Page | 16
|

TECHNOXAMM

Guide for way to Learn

An IDE that knows the syntax of your language can provide visual cues.
Keywords, words that have special meaning like class in Java, are
highlighted with different colors.

e Autocomplete

When the IDE knows your programming language, it can
anticipate what you’re going to type next!.We’ve seen statements
with printf() quite a bit so far. In an IDE, we might see printf() as
an autocomplete option after only typing pr. This saves keystrokes
so the programmer can focus on logic in their code.

e Debugging

No programmer avoids writing bugs and programs with
errors.When a program does not run correctly, IDEs provide
debugging tools that allow programmers to examine different
variables and inspect their code in a deliberate way.

IDEs also provide hints while coding to prevent
errors before compilation.

Page | 17
|

TECHNOXAMM

Guide for way to Learn

Elements of C Programming Language

As every language has some basic geometrical rules and elements,
similarly C language has some elements and rules for building a
program which has some meaning.

Character Set: In Real world to communicate with people we use
language like Hindi English Urdu extra which is constructed and
Defined by some characters, words extra. Similarly in C programming
language we have various characters to communicate with the computer
in order to produce a meaningful program and can produce an output.

Alphabers AB ... Y.Z
b

Digits 0.1,2.3.4.5,6,7,8,9

Special symbols |~ 1 @# % &*()_-+=|"{}
[1:; "' =>, .2/

Tokens in C

We can define the token as the smallest individual element in C. For
‘example, we cannot create a sentence without using words; similarly,
we cannot create a program in C without using tokens in C.

Therefore, we can say that tokens in C is the building block or the basic
component for creating a program in C language.

Page | 18
|

TECHNOXAMM

Guide for way to Learn

3

1 Constants 6

Keywords

Operators

Classification of C Tokens

Keywords:

1) they are those elements of C language whose meaning has already
being defined or explained and has seeds task.

2) keyword cannot be used to assign new meaning to the keywords.

Auto do goto signed unsigned break
void else int case static double
sizeof enum |long struct char if
while const extern register continue volatile
defualt for typeodef float short return
union const

Identifiers:

An identifier is nothing but a name assigned to an element in a program.
Example, name of a variable, function, etc. Identifiers are the user-
defined names consisting of 'C' standard character set.

Following rules must be followed for identifiers:

Page | 19

TECHNOXAMM

Guide for way to Learn

1. The first character must always be an alphabet or an underscore.
2. It should be formed using only letters, numbers, or underscore.
3. A keyword cannot be used as an identifier.

4. It should not contain any whitespace character.

5. The name must be meaningful.

Constants:

A constant is a value assigned to the variable which will remain the
same throughout the program, i.e., the constant value cannot be
changed.

There are two ways of declaring constant:

- Using const keyword
o Using #define pre-processor

Constant Example

Integer constant 10, 11, 34, etc.
Floating-point 45.6, 67.8, 11.2, etc.
constant
Octal constant 011, 088, 022, etc.
Hexadecimal Ox1a, 0x4b, 0x6b, etc.
constant
Character constant 'a', 'b’', 'c', etc.
String constant "java", "c++", ".net", etc.

tup- | ev

TECHNOXAMM

Guide for way to Learn

Strings:

Strings in C are always represented as an array of characters having null
character "\0' at the end of the string. This null character denotes the end
of the string. Strings in C are enclosed within double quotes, while
characters are enclosed within single characters. The size of a string is a
number of characters that the string contains.

Strings in different ways:

char a[10] = "TechnoXamm"; // The compiler allocates the 10 bytes to
the 'a' array.

char a[] =" TechnoXamm "; // The compiler allocates the memory at
the run time.

char a[10] = {‘t’,’¢’,’c’,’h’,’n’,’0’°,’x’,’a’,’m’,’m’,"\0"}; // String is
represented in the form of characters.

Special Characters

Some special characters are used in C, and they have a special meaning
which cannot be used for another purpose.

- Square brackets [|: The opening and closing brackets represent
the single and multidimensional subscripts.

- Simple brackets (): It is used in function declaration and function
calling. For example, printf() is a pre-defined function.

o Curly braces { }: It is used in the opening and closing of the code.
It is used in the opening and closing of the loops.

- Comma (,): It is used for separating for more than one statement

and for example, separating function parameters in a function call,
Page | 21
|

TECHNOXAMM

Guide for way to Learn

o separating the variable when printing the value of more than one
variable using a single printf statement.

- Hash/pre-processor (#): It is used for pre-processor directive. It
basically denotes that we are using the header file.

o Asterisk (*): This symbol is used to represent pointers and also
used as an operator for multiplication.

o Tilde (~): It is used as a destructor to free memory.
o Period (.): It is used to access a member of a structure or a union.

Operators

Operators in C is a special symbol used to perform the functions. The
data items on which the operators are applied are known as operands.
Operators are applied between the operands. Depending on the number
of operands, operators are classified as follows:

Operators
Arithmatic Relational Assignment Logical
Unary Bmary < = &
++ - > += |
2P - <= -— !
* == = [

Page | 22
|

TECHNOXAMM

Guide for way to Learn

Comments

A comment is an explanation or description of the source code of the
program. It helps a developer explain logic of the code and improves
program readability. At run-time, a comment is ignored by the compiler.

There are two types of comments in C:

1) A comment that starts with a slash asterisk /* and finishes with an
asterisk slash */ and you can place it anywhere in your code, on the
same line or several lines.

2) Single-line Comments which uses a double slash // dedicated to
comment single lines

Example of single line comment :
//' A single line comment
Example of Multi Line comment :
/* Multiline

Comment */

rage | £5

TECHNOXAMM

Guide for way to Learn

Operators in C Language

An operator is simply a symbol that is used to perform operations.
There can be many types of operations like arithmetic, logical, bitwise,
ete.

There are following types of operators to perform different types of
operations in C language.

o Arithmetic Operators

- Relational Operators

o Logical Operators

o Bitwise Operators

o Ternary or Conditional Operators
o Assignment Operator

Precedence of Operators in C

The precedence of operator species that which operator will be
evaluated first and next. The associativity specifies the operator
direction to be evaluated; it may be left to right or right to left.
Example:

int value = 10 +20 * 10

The value variable will contain 210 because * (multiplicative operator)
is evaluated before + (additive operator).

The precedence and associativity of C operators is given below:

Page | 24
|

TECHNOXAMM

Guide for way to Learn

Category Operator Associativity
Postfix orl-=>.++-- Left to right
Unary + - | ~++ - - (type)* &sizeof Right to left
Multiplicative | */ % Left to right
Additive + - Left to right
Shift <<>> Left to right
Relational <<=>>= Left to right
Equality === Left to right
Bitwise AND | & Left to right
Bitwise XOR | * Left to right
Bitwise OR | Left to right
Logical AND | && Left to right
Logical OR I Left to right
Conditional ?: Right to left
Assignment =+=-=%*=/=%=>>=<<=&="=|=| Rightto left
Comma , Left to right

Page | 25

TECHNOXAMM

Guide for way to Learn

Arithmetic Operators

Operator Description Example

+ Addition | Adds together two values Xty

- Subtraction | Subtracts one value from another |x -y

* Multiplication | Multiplies two values X *y
/ Division | Divides one value by another x/y
% Modulus | Returns the division remainder x%y
++ Increment | Increases the value of a variable | ++x

by 1

- Decrement | Decreases the value of a variable | --x
by 1

Arithmetic Operators are used to performing mathematical calculations
like addition (+), subtraction (-), multiplication (*), division (/) and
modulus (%).

Page | 26
|

TECHNOXAMM

Guide for way to Learn

Relational Operators

Relational operators are used to comparing two quantities or values.

Operator Description

== Check if two operand are equal
I= Check if two operand are not equal.
- Check if operand on the left is greater than operand on the
right
< Check operand on the left is smaller than right operand
>= Check left operand is greater than or equal to right operand
- Check if operand on left is smaller than or equal to right
operand
Logical Operator
C language supports following 3 logical operators : -
e AND
e OR

Page | 27
|

TECHNOXAMM

Guide for way to Learn

e NOT

Lets understand this with an example. Suppose a=1and b= 0,

Operator Description Example
&& Logical AND (a && b) is false
[Logical OR (a || b) 1s true
! Logical NOT ('a) 1s false

Bitwise Operators

Operator Description

& Bitwise AND

| Bitwise OR

A Bitwise exclusive OR
<< left shift

Page | 28
|

TECHNOXAMM

Guide for way to Learn

>> right shift

Bitwise operators perform manipulations of data at bit level. These
operators also perform shifting of bits from right to left. Bitwise
operators are not applied to float or double

Now lets see truth table for bitwise &, | and *

alb a“’b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The bitwise shift operator, shifts the bit value. The left operand
specifies the value to be shifted and the right operand specifies the
number of positions that the bits in the value have to be shifted. Both
operands have the same precedence.

Page | 29
|

TECHNOXAMM

Guide for way to Learn

Conditional Operators

The conditional operators in C language are known by two more names
1. Ternary Operator
2. ? : Operator

It is actually the if condition that we use in C language decision making,
but using conditional operator, we turn the if condition statement into a
short and simple operator.

The syntax of a conditional operator is :

expression 1 ? expression 2 : expression 3

Explanation:

e The question mark "?" in the syntax represents the if part.

e The first expression (expression 1) generally returns either true
or false, based on which it is decided whether (expression 2) will
be executed or (expression 3)

o If (expression 1) returns true then the expression on the left side
of " : " 1.e (expression 2) is executed.

o [f (expression 1) returns false then the expression on the right
side of "' : " 1.e (expression 3) is executed.

Assignment Operator

Assignment operators supported by C language are as follows.

1age | vV

TECHNOXAMM

Guide for way to Learn

Operator Description Example

_ assigns values from right side 1=b
operands to left side operand
adds right operand to the left :

+= . += =a+
operand and assign the result to left at=b is same as a=a+b
subtracts right operand from the left

-= operand and assign the result to left | a-=b i1s same as a=a-b
operand
mutiply left operand with the right

k= operand and assign the result to left |a*=b is same as a=a*b
operand
divides left operand with the right

/= operand and assign the result to left | a/=b is same as a=a/b
operand
calculate modulus using two 0/ 1. -

o) : a%=b 1s same as

Vo= operands and assign the result to e

a=a%b

left operand

Page | 31
|

TECHNOXAMM

Guide for way to Learn

Control Statements

In C, the control flows from one instruction to the next instruction until
now in all programs. This control flow from one command to the next is
called sequential control flow. Nonetheless, in most C programs the
programmer may want to skip instructions or repeat a set of instructions
repeatedly when writing logic. This can be referred to as sequential
control flow. The declarations in C let programmers make such
decisions which are called decision-making or control declarations.

C also supports an unconditional set of branching statements that
transfer the control to another location in the program. Selection
declarations in C.

1. If statements

2. Switch Statement

3. Conditional Operator Statement
4. Goto Statement

If Statements

If statement enables the programmer to choose a set of instructions,
based on a condition. When the condition is evaluated to true, a set of
instructions will be executed and a different set of instructions will be
executed when the condition is evaluated to false. We have 4 types of if
Statement which are:

Page | 32
|

TECHNOXAMM

Guide for way to Learn

I. If Statement

The condition evaluates to either true or false. True is always a
non-zero value, and false is a value that contains zero. Instructions
can be a single instruction or a code block enclosed by curly braces

U

Syntax :
if (condition)

{

Statement ;

True

if(condition) execute if statements block

Next statement <

Page | 33
|

TECHNOXAMM

Guide for way to Learn

Example:

#include<stdio.h>
int main()
{
int numl1=1;
int num2=2;
if(num1<num?2) //test-condition

{

printf("num1 is smaller than num2");

}

return 0O;

numl 1s smaller than num?2

II. If - else Statement
In this statement, there are two types of statements execute. First, if
the condition is true first statement will execute if the condition is
false second condition will be executed.

Syntax:

Page | 34
|

TECHNOXAMM

Guide for way to Learn

If(condition)
{
Statement(s);
j
else
{
Statement(s)
j
Statement
Start
S
Yes -"f e : Mo
Condition ™.
true?
Execute code in Execute code in
if block else block

l

Execute code
outside if block

Page | 35

TECHNOXAMM

Guide for way to Learn

Example:

#include<stdio.h>

int main()

{

int num=19;
1f(nhum<10)
{

printf("The value is less than 10");

printf("The value is greater than 10");

b

return O;

The value is greater than 10

Page | 36
|

TECHNOXAMM

Guide for way to Learn

III. Else -if
The else..if statement is useful when you need to check multiple
conditions within the program, nesting of if-else blocks can be
avoided using else..if statement.

Syntax:
if (condition1)
{
//These statements would execute if the condition] is true
§
else if(condition2)
{
//These statements would execute i1f the condition?2 is true
§
else if (condition3)
{
//These statements would execute if the condition3 is true
§
else
{

//These statements would execute if all the conditions return false

}
Page | 37
|

TECHNOXAMM

Guide for way to Learn

Example:

#include<stdio.h>

main()

{

int a, b;

printf("Please enter the value for a:");
scanf("%d", & amp; a);

printf("\nPlease enter the value for b:");
scanf("%d", & amp; b);

if (a & gt; b)
{
printf("\n a is greater than b");
;
else if (b & gt; a)
1

printf("\n b 1s greater than a");

b

else

{

printf("\n Both are equal");

j
b

Page | 38
|

TECHNOXAMM

Guide for way to Learn

Please enter value of a:5
Please enter value of b:7

b 1s greater than a

false

false

true true

IV. Nested If — Else
When a series of decision is required, nested if-else is used.
Nesting means using one if-else construct within another one.

When an if else statement is present inside the body of another “if”
or “else” then this is called nested if else.

Page | 39

TECHNOXAMM

Guide for way to Learn

Syntax:

if(condition)

//Nested if else inside the body of "if"
if(condition?2)

//Statements inside the body of nested "if"
b

else

//Statements inside the body of nested "else"

}

else

//Statements inside the body of "else"

Example:

Page | 40

TECHNOXAMM

Guide for way to Learn

#include<stdio.h>

int main()

{

int num=1;
1f(num<10)
{

if(num==1)

{

printf("The value 1s:%d\n",num);

printf("The value 1s greater than 1");

else

printf("The value 1s greater than 10");

b

return O;

;
Page | 41
|

TECHNOXAMM

Guide for way to Learn

The value 1s:1

Y
Statement2 Statement3 Statementd
4|' '
- .T -
To next statement

(If Any)

Statement1

&

Switch Statements

Switch statement in C tests the value of a variable and compares it with
multiple cases. Once the case match is found, a block of statements
associated with that particular case is executed.

Each case in a block of a switch has a different name/number which is
referred to as an identifier. The value provided by the user is compared
with all the cases inside the switch block until the match 1s found.

Syntax:

Page | 42
|

TECHNOXAMM

Guide for way to Learn

switch(expression)

{

case value-1:
Block-1;
break;

case value-2:
Block-2;
break;

case value-n:
Block-n;
break;

default:
Block-1;
break;

b

Rules for using switch statement

1. The expression (after switch keyword) must yield an integer value
1.e the expression should be an integer or a variable or an
expression that evaluates to an integer.

2. The case label values must be unique.

Page | 43
|

TECHNOXAMM

Guide for way to Learn

3. The case label must end with a colon(:)

4. The next line, after the case statement, can be any valid C
statement.

Points to Remember

1. We don't use those expressions to evaluate switch case, which may
return floating point values or strings or characters.

2. break statements are used to exit the switch block. It isn't necessary
to use break after each block, but if you do not use it, then all the

consecutive blocks of code will get executed after the matching
block.

3. default case 1s executed when none of the mentioned case matches
the switch expression. The default case can be placed anywhere in
the switch case. Even if we don't include the default
case, switch statement works.

4. Nesting of switch statements are allowed, which means you can
have switch statements inside another switch block.

Difference between switch and if

. 1f statements can evaluate float conditions. switch statements
cannot evaluate float conditions.

. if statement can evaluate relational operators. switch statement
cannot evaluate relational operators 1.e they are not allowed
in switch statement.

Page | 44
|

TECHNOXAMM

Guide for way to Learn

Example:

#include <stdio.h> default:
int main() printf("Default ");

{ h
char ch='b'; return 0;
switch (ch) }
{
case 'd"
printf("CaseD ");
break;
case 'b":
printf("CaseB");
break;
case 'c":
printf("CaseC");
break;

case 'z"
printf("CaseZ ");
break;

Page | 45
|

TECHNOXAMM

Guide for way to Learn

CaseB

2 BREAK

SASED BLOCK 1
CASE 2
BLOCK 2
DEFALULT
DEFAULT

RS

STATEMENT-X

Page | 46

TECHNOXAMM

Guide for way to Learn

Conditional Operator Statement

It 1s similar to the if-else statement. The if-else statement takes more
than one line of the statements, but the conditional operator finishes the
same task in a single statement. The conditional operator in C is also
called the ternary operator because it operates on three operands.

The operands may be an expression, constants or variables. It starts with
a condition, hence it is called a conditional operator.

Syntax:
expressionl ? expression2 : expression3;
or

condition ? true statement : false statement;

Example:

#include<stdio.h>

int main()

{
float num1, num2, max;

printf("Enter two numbers: ");

scanf("%f %f", &numl, &num?2);

Page | 47
|

TECHNOXAMM

Guide for way to Learn

max = (numl >num?2) ? numl : num?2;
printf("Maximum of %.2f and %.2f = %.2f",num1, num2, max);

return 0;

b

Enter two numbers: 12.5 10.5
Maximum of 12.50 and 10.50 = 12.50

False True

l W l

False Expression True Expression

- l -}
To next statement
{If Any)

Page | 48
|

TECHNOXAMM

Guide for way to Learn

Looping Structures

A Loop executes the sequence of statements many times until the stated
condition becomes false. A loop consists of two parts, a body of a loop
and a control statement. The control statement is a combination of some
conditions that direct the body of the loop to execute until the specified
condition becomes false. The purpose of the loop is to repeat the same
code a number of times.

Depending upon the position of a control statement in a program,
looping in C is classified into two types:

1. Entry controlled loop
2. Exit controlled loop

In an entry controlled loop, a condition 1s checked before executing the
body of a loop. It is also called as a pre-checking loop.

In an exit controlled loop, a condition is checked after executing the
body of a loop. It is also called as a post-checking loop.

The control conditions must be well defined and specified otherwise the
loop will execute an infinite number of times. The loop that does not
stop executing and processes the statements number of times is called as
an infinite loop. An infinite loop is also called as an "Endless loop."
Following are some characteristics of an infinite loop:

1. No termination condition is specified.

2. The specified conditions never meet.

TECHNOXAMM

Guide for way to Learn

'C' programming language provides us with three types of loop
constructs:

1. The while loop
2. The do-while loop
3. The for loop

CHECK CONDITION

Condition is TRUE

STATEMENT BLOCK

J' Condition is FALSE

EXIT LOOP

Page | 50

TECHNOXAMM

Guide for way to Learn

I. While Loop :

While loop in C is a pre-test loop where the expression is evaluated then
only statements are executed. It uses a test expression to control the
loop. Before every iteration of the loop, the test expression is evaluated.

Syntax :

while(condition)

//code
§

Example :

#include<stdio.h>
#include<conio.h>
void main()

{
nti=1;
while(1<=10) {
printf ("%d " ,1,” %);

i++;

5

Page | 51
|

TECHNOXAMM

Guide for way to Learn

12345678910

II. Do — While Loop

It also executes the code until condition is false. In this at least once,
code is executed whether condition 1s true or false but this is not the
case with while. While loop is executed only when the condition is true.

Syntax:
do

{
//code

+while(condition);

#include<stdio.h>
#include<conio.h>
void main()

{
inti=1;

do{

printf ("%d " ,1,” %);
1++;
twhile(1<=10);
getch();

Page | 52
|

TECHNOXAMM

Guide for way to Learn

12345678910

III. For Loop

When you know exactly how many times you want to loop through a
block of code, use the for loop instead of a while loop:

It also executes the code until condition is false. In this three parameters
are given that is

e Initialization
e Condition
e Increment/Decrement

Syntax :

for (statement 1; statement 2; statement 3) {
// code block to be executed
} or

for (Initialization; Condition; Increment/Decrement) {
// code block to be executed

b

Statement 1 is executed (one time) before the execution of the code
block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been
executed.

Page | 53
|

TECHNOXAMM

Guide for way to Learn

Example:

#include<stdio.h>
#include<conio.h>
void main()

{
nt 1;
for(1=20;1<25;1++) {
printf ("%d " , 1,, ©“ *);

h
getch();

j

2021222324

Nested Loops

A loop inside another loop is called a nested loop. The depth of nested
loop depends on the complexity of a problem. We can have any number
of nested loops as required. Consider a nested loop where the outer loop
runs n times and consists of another loop inside it. The inner loop

runs m times. Then, the total number of times the inner loop runs during
the program execution is n*m.

Page | 54
|

TECHNOXAMM

Guide for way to Learn

Nested While Loop
Example:
#include <stdio.h> printf("n");
int main() i+t
{ b
int 1=1,j; return O;
while (i <= 5))
{
=1 1
while (j <=1) I2
{ 123
printf("%d " j); 234
s 12345
)

Page | 55
|

TECHNOXAMM

Guide for way to Learn

Conditionl

Statements

fig: Flowchart for nested while loop

Nested Do — While Loop

#include <stdio.h>

int main()

int i=1,j;

do

Page | 56
|

TECHNOXAMM

Guide for way to Learn

printf("*");
it
twhile(j <=1);
1++;
printf("n");
twhile(1 <=5);

return O;

k3K

kKK

kkkk

kokkkok

Page | 57
|

TECHNOXAMM

Guide for way to Learn

l

Statements |4

True

Conditionl

True

Condition2

Fig: Flowchart for nested do-while loop

Nested For Loop

#include<stdio.h>
#include<math.h>

int main()

{

Page | 58
|

TECHNOXAMM

Guide for way to Learn

int 1,j,n;
printf("Enter a number:");
scanf("%d",&n);
for(i=2;1<=n;1++)
d
for(j=2;j<=(int)pow(i,0.5);j++)
{
1f(1%j==0)
d
printf("%d is compositen",1);

break;

b

return O;

Page | 59

TECHNOXAMM

Guide for way to Learn

Enter a number:15
4 1s composite

6 1s composite

8 1s composite

9 is composite

10 1s composite
12 is composite
14 is composite

15 1s composite

Initialization

Increment/

Decrement

Increment/
Decrement
'y

Fig: Flowchart for nested for loop

Page | 60

TECHNOXAMM

Guide for way to Learn

Jump Statements

Jump Statement makes the control jump to another section of the
program unconditionally when encountered. It is usually used to
terminate the loop_or switch-case instantly. It 1s also used to escape the
execution of a section of the program.

1. Break Jump Statement

A break statement is used to terminate the execution of the rest of the
block where it is present and takes the control out of the block to the
next statement.

It is mostly used in loops and switch-case to bypass the rest of the
statement and take the control to the end of the loop. The use of

the break keyword in switch-case has been explained in the previous
tutorial Switch — Control Statement.

Another point to be taken into consideration is that the break statement
when used in nested loops only terminates the inner loop where it is
used and not any of the outer loops.

#include <stdio.h> }

int main() { return 0;
int i; j

for (i=1;i<=15; i++) {

printf("%d\n", i);
if (i == 10)

break;

Page | 61
|

TECHNOXAMM

Guide for way to Learn

O o0 9 N n Bk~ W N

[E—
-

2. Continue Jump Statement

The continue jump statement like any other jump statement interrupts or
changes the flow of control during the execution of a

program. Continue is mostly used in loops.

Rather than terminating the loop it stops the execution of the statements
underneath and takes control to the next iteration.

Similar to a break statement, in the case of a nested loop, the continue
passes the control to the next iteration of the inner loop where it is
present and not to any of the outer loops.

Page | 62
|

TECHNOXAMM

Guide for way to Learn

#include <stdio.h>

int main() {

int 1, j;
for(1=1;1<3;1++) {
for g=1;]<5;j++) {
if(G==2)

continue;

printf("%d\n", j);

j
j

return 0;

j

A W = BN W =

Page | 63
|

TECHNOXAMM

Guide for way to Learn

3. Goto Jump Statement

goto jump statement is used to transfer the flow of control to any part of
the program desired. The programmer needs to specify a label or
identifier with the goto statement in the following manner:

goto label,

#include <stdio.h>

int main() {

int 1, j;
for(1=1;1<5;1++) {
if (1==2)

goto there;
printf("%d\n", 1);

h
there:
printf("Two");
return 0;

b

Two

Page | 64
|

TECHNOXAMM

Guide for way to Learn

4. Return Jump Statement

Return jump statement is usually used at the end of a function to end or
terminate it with or without a value. It takes the control from the calling
function back to the main function(main function itself can also have

a return).

An important point to be taken into consideration is that return can
only be used in functions that is declared with a return type such
as int, float, double, char, etc.

The functions declared with void type does not return any value. Also,
the function returns the value that belongs to the same data type as it is
declared. Here is a simple example to show you how

the return statement works.

#include <stdio.h>
char func(int ascii) {
return ((char) ascii);
b
int main() {

int ascii;

char ch;

printf("Enter any ascii value in decimal: \n");
scanf("%d", & ascii);

ch = func(ascii);

Page | 65
|

TECHNOXAMM

Guide for way to Learn

printf("The character 1s : %c", ch);

return 0;

j

Enter any ascii value in decimal:
110

The character is : n

Page | 66

TECHNOXAMM

Guide for way to Learn

Characters in C

As every language contains a set of characters used to construct
words, statements, etc., C language also has a set of characters
which include alphabets, digits, and special symbols. C
language supports a total of 256 characters.

Every C program contains statements. These statements are
constructed using words and these words are constructed using
characters from C character set. C language character set
contains the following set of characters...

1. Alphabets

2. Digits

3. Special Symbols
Alphabets

C language supports all the alphabets from the English language.
Lower and upper case letters together support 52 alphabets.

lower case letters - a to z
UPPER CASE LETTERS - A to Z
Digits

Page | 67
|

TECHNOXAMM

Guide for way to Learn

C language supports 10 digits which are used to construct
numerical values in C language.

Digits - 0,1,2,3,4,5,6,7,8,9

Special Symbols

C language supports a rich set of special symbols that include
symbols to perform mathematical operations, to check
conditions, white spaces, backspaces, and other special symbols.

Special Symbols -~@#$ % * & * () _-+={}[]:;:"'""/?2.
>, <\| tab newline space NULL bell backspace verticaltab
etc.,

Characters ASCIl Value

A-Z 65 - 90

a-z 97 - 122

0-9 48 - 57

Special Symbol 0-47,58-64, 91-96, 123 - 127

Page | 68
|

TECHNOXAMM

Guide for way to Learn

Letter ASCII Code Binary Letter ASCII Code Binary
a a7 01100001 A 065 Q1000001

b 093 01100010 B 066 01000010
c 099 01100011 C 067 01000011
d 100 01100100 D 068 01000100
e 101 01100101 = 069 01000101
f 102 01100110 2 070 01000110
aJ 103 01100111 G 071 01000111
h 104 01101000 H 072 01001000
i 105 01101001 I 073 01001001
j 106 01101010] 074 01001010
k 107 01101011 K 075 01001011
| 108 01101100 L 076 01001100
m 109 01101101 M 077 01001101
n 110 01101110 N 078 01001110
o 111 01101111 0 079 01001111
p 112 01110000 P 080 01010000
q 113 01110001 Q 081 01010001
r 114 01110010 R 082 01010010
s 115 01110011 5 083 01010011
t 116 01110100 a3 084 01010100
L 117 01110101 U 085 01010101
W 118 01110110 v 086 01010110
w 119 01110111 W 087 01010111

120 01111000 X 088 01011000

121 01111001 Y 089 01011001
z 122 01111010 z 090 01011010

Page | 69
.

TECHNOXAMM

Guide for way to Learn

Program to print all ASCII Character code

#include<stdio.h>
#include<conio.h>
int main() {
int 1;
clrscr();
printf("ASCII ==> Character\n");
for(i=-128;1<=127; i++)
printf("%d ==> %c\n", 1, 1);
getch();

return O;

Page | 70
|

TECHNOXAMM

Guide for way to Learn

Arrays

In C language, it 1s a collection of similar type of data which can be
either of int, float, double, char (String), etc. All the data types must be
same. For example, we can't have an array in which some of the data are
integer and some are float.

2 B 33 23 45 97 10

Array of integers

Suppose we need to store marks of 50 students in a class and calculate
the average marks. So, declaring 50 separate variables will do the job
but no programmer would like to do so. And there comes array in
action.

Declaration of an Array

datatype array name [array_size | ;

For example, take an array of integers 'n'.

int n[6];

n[]1s used to denote an array 'n'. It means that 'n' is an array.

So, int n[6] means that 'n' is an array of 6 integers. Here, 6 is the size of
the array i.e. there are 6 elements in the array 'n'.

n

We need to give the size of the array because the complier needs to
allocate space in the memory which is not possible without knowing the
size. Compiler determines the size required

Page | 71
|

TECHNOXAMM

Guide for way to Learn

for an array with the help of the number of elements of an array and the
size of the data type present in the array.

Here 'int n[6]' will allocate space to 6 integers.
We can also declare an array by another method.
intn[]= {2, 3, 15, 8, 48, 13};

In this case, we are declaring and assigning values to the array at the
same time. Here, there is no need to specify the array size because
compiler gets it from { 2,3,15,8,48,13 }.

Indexing in an Array

Every element of an array has its index. We access any element of an
array using its index.

Pictorial view of the above mentioned array is:

Element 2 3 15 8 48 13

Index 0 1 2 3 4 5

0, 1,2, 3,4 and 5 are indices. It is like they are identity of 6 different
elements of an array. Index always starts from 0. So, the first element of
an array has a index of 0.

“Index of an array starts with 0.”
We access any element of an array using its index and the syntax to do
SO 1S:

array name|[index|

Page | 72
|

TECHNOXAMM

Guide for way to Learn

For example, if the name of an array 1s 'n', then to access the first
element (which is at 0 index), we write n[0].

2o |8 f4s]i3
n

n[0] n[1] n[2] n[3] n[4] n[5]

n[0], n[1], etc. are like any other variables we were using till now i.e.,
we can set there value as n[0] = 5; like we do with any other variables (x
=35;,y = 6;, etc.).

Assigning Values to Array

By writing int n[]={ 2,4,8 }; , we are declaring and assigning values to
the array at the same time, thus initializing it.

But when we declare an array like int n[3];, we need to assign values to
it separately. Because 'int n[3];' will definitely allocate space of 3
integers in memory but there are no integers in that space.

To initialize it, assign a value to each of the elements of the array.

Page | 73
|

TECHNOXAMM

Guide for way to Learn

n[0] = 2;
n[1]=4;
n[2] = 8;

It is just like we are declaring some variables and then assigning values
to them.

int x,y,z;
X=2;
y=4;
7=8;

#include <stdio.h>

int main()

{

int marks[3];

float average;

printf("Enter marks of first student\n");
scanf(" %d" , &marks[0]);

printf("Enter marks of second student\n");
scanf(" %d" , &marks[1]);

printf("Enter marks of third student\n");

Page | 74
|

TECHNOXAMM

Guide for way to Learn

scanf(" %d" , &marks[2]);

average = (marks[0] + marks[1] + marks[2]) / 3.0;

printf ("Average marks : %f\n" , average);

return O;

Enter marks of first student
23

Enter marks of second student
25

Enter marks of third student
30

Average marks : 26.000000

In the above example, two points should be kept in mind.

The average value should be of type 'float' because the average of
integers can be float also.

Secondly, while taking out the average, the sum of the numbers should
be divided by 3.0 and not 3, otherwise you will get the average value as
an integer and not float.

Page | 75
|

TECHNOXAMM

Guide for way to Learn

#include <stdio.h>

int main()

{
int n[10]; /* declaring n as an array of 10 integers */
int 1,];

/* initializing elements of array n */
for (1= 0; 1<10; 1++)
{
printf("Enter value of n[%d]",1);
scanf("%d",&n[1]);
}
/* printing the values of elements of array */
for j=0;3<10; j++)
{
printf("n[%d] = %d\n", j, n[j]);
§

return O;

Page | 76
|

TECHNOXAMM

Guide for way to Learn

Enter value of n[0]12
Enter value of n[1]34
Enter value of n[2]23
Enter value of n[3]78
Enter value of n[4]32
Enter value of n[5]21
Enter value of n[6]4

Enter value of n[7]23
Enter value of n[8]46
Enter value of n[9]24

n[0] = 12
n[1]=34
n[2] =23
n[3] =78
n[4] = 32
n[5] =21
n[6] = 4

n[7] =23
n[8] = 46
n[9] = 24

Pointer to Arrays

As we all know that pointer is a variable whose value is the address of
some other variable 1.e., if a variable 'y' points to another variable 'x', it
means that the value of the variable 'y' is the address of 'x'.

Page | 77
|

TECHNOXAMM

Guide for way to Learn

Similarly, if we say that a variable 'y' points to an array n', it would
mean that the value of 'y' is the address of the first element of the
array 1.e. n[0]. It means that the pointer of an array 1s the pointer of its
first element.

The name of an array is the pointer to the first element of the array.
If 'p' is a pointer to array 'age', means that p (or age) points to age[0].

int age[50];

int *p;

p = age;

The above code assigns 'p' the address of the first element of the array

'age’'.
a[0]
Address of a = address of a[0] = &a[0] = a

Now, since 'p' points to the first element of array 'age', "*p' is the value
of the first element of the array.

Since *p refers to the first array element, *(p+1) and *(p+2) refers to the
second and third elements respectively and so on.

So, *p is age[0], *(p+1) is age[1], *(p+2) 1s age[2].

Similarly, *age is age[0] (value at age), *(age+1) 1s age[1] (value at
age+1), *(age+2) is age[2] (value at age+2) and so on.

That's all in pointer to arrays.

Page | 78
|

TECHNOXAMM

Guide for way to Learn

#include <stdio.h>
int main()

{

float n[5] = { 20.4, 30.0, 5.8, 67, 15.2 }; /* declaring n as an array
of 5 floats */

float *p; /* p as a pointer to float */

nt 1;

p =n; /* p now points to array n */

/* printing the values of elements of array */
for(1=0;1<35;1++)

{

printf("*(p + %d) = %f\n", 1, *(p + 1));/* *(p+1) means value at
(p+0),(p*1)..*/

b

return O;

*(p + 0) = 20.400000
*(p + 1) = 30.000000
*(p + 2) = 5.800000

*(p + 3) = 67.000000
*(p + 4) = 15.200000

Page | 79
|

TECHNOXAMM

Guide for way to Learn

As 'p' is pointing to the first element of array,so, *p or *(p+0) represents
the value at p[0] or the value at the first element of 'p'.

Similarly, *(p+1) represents value at p[1]. And *(p+3) and

*(pt+4) represents p[3] and p[4] respectively. So accordingly, things
were printed.

#include <stdio.h>

int main()

{
int n[4] ={ 20, 30, 5, 67 }; /* declaring n as an array of 4 integers */
int *p; /*a pointer*/
inti;

p =n; /*p is pointing to array n*/
/* printing the address of array */
printf("Address of array n[4] = %u\n", p);
/* printing the addresses of elements of array */
for(i=0;i<4;i++)
{
printf("Address of n[%d] = %u\n" , i, &nli]);
}

return O;

Page | 80
|

TECHNOXAMM

Guide for way to Learn

Address of array n[4] = 2491554384
Address of n[0] = 2491554384
Address of n[1] = 2491554388
Address of n[2] = 2491554392
Address of n[3] = 2491554396

Page | 81
|

TECHNOXAMM

Guide for way to Learn

Multidimensional Array

The elements of an array can be of any data type, including arrays! An
array of arrays is called a multidimensional array.

2D Arrays

Yes, 2-dimensional arrays also exist and are generally known as matrix.
These consist of rows and columns.

Before going into its application, let's first see how to declare and
initialize a 2D array.

Declaration of 2D Array

Similar to one-dimensional array, we define a 2-dimensional array as
below.

int a[2][4];

Here, 'a' is a 2D array of integers which consists of 2 rows and 4
columns.

Column 0 Column 1 Column2 Column 3

Page | 82
|

TECHNOXAMM

Guide for way to Learn

Assigning Values to a 2 D Array

Same as in one-dimensional array, we can assign values to the elements
of a 2-dimensional array in 2 ways as well.

In the first method, just assign a value to the elements of the array. If no
value is assigned to any element, then its value is assumed to be zero.

Suppose we declared a 2-dimensional array a[2][2]. Now, we need to
assign values to its elements.

int a[2][2];

a[0][0]=1;

a[0][1]=2;

a[1][0]=3;

a[1][1]=4;

The second way i1s to declare and assign values at the same time as we
did in one-dimensional array.

inta[2][3]1=1{1,2,3,4,5,6};

Here, value of a[0][0] is 1, a[0][1] is 2, a[0][2] is 3, a[1][0] is 4, a[1][1]
is 5 and a[1][2] 1s 6.

Let's consider different cases of assigning values to an array at the time
of declaration.

inta[2][2] = { 1,2, 3,4 }; /* valid */

| e T s T e I e |

intal][2]=1{1,2,3,4};/*valid */
intal2][]=1{1,2,3,4};/*1nvalid */
imta[[[]=1{1,2,3,4};/* invalid */

Page | 83
|

TECHNOXAMM

Guide for way to Learn

#include <stdio.h>
int main()
{
float marks[3][2];
int 1,j;
for(1=0; 1<3; 1++)
{
/* input of marks from the user */
printf("Enter marks of student %d\n", (i+1));
for(j=0; j<2; j++)
{
printf("Subject %d\n", (j+1));
scanf("%f", &marks[1][j]);

b

/* printing the marks of students */

for(1=0; 1<3; 1++)

{
printf("Marks of student %d\n", (1+1));
for(1=0; 1<2; j++)

Page | 84
|

TECHNOXAMM

Guide for way to Learn

printf("Subject %d : %f\n", (j+1), marks[i][j]);

b

return O;

Enter marks of student 1
Subject 1

78

Subject 2

67

Enter marks of student 2
Subject 1

79

Subject 2

87

Enter marks of student 3
Subject 1

90

Subject 2
k9

Page | 85
|

TECHNOXAMM

Guide for way to Learn

Marks of student 1
Subject 1 : 78.000000
Subject 2 : 67.000000
Marks of student 2
Subject 1 : 79.000000
Subject 2 : 87.000000
Marks of student 3
Subject 1 : 90.000000
Subject 2 : 89.000000

Subject 1 Subject 2

Student 1

Student 2

Student 3

Page | 86
|

TECHNOXAMM

Guide for way to Learn

String Handling in C

The string can be defined as the one-dimensional array of characters
terminated by a null ("\0"). The character array or the string is used to
manipulate text such as word or sentences. Each character in the array
occupies one byte of memory, and the last character must always be 0.
The termination character (\0') is important in a string since it is the
only way to identify where the string ends. When we define a string as
char s[10], the character s[10] is implicitly initialized with the null in
the memory.

String Declaration

Method 1:

char address[|={'T", 'E", X', 'A", 'S', \0'};
Method 2:

char address[]="TEXAS";

In the above declaration NULL character (\0) will automatically be
inserted at the end of the string.

"0' represents the end of the string. It is also referred as String
terminator & Null Character.

Index 0 1 2 3 4 5
Variable H = | | 0 \0
Address 0x23451 | Ox23452 0x23453 0x23454 | ox23455 | Ox23456

Page | 87
|

TECHNOXAMM

Guide for way to Learn

Read & write Strings in C using Printf() and Scanf() functions

#include <stdio.h>

#include <string.h>
int main()

{

/* String Declaration™®/
char nickname[20];

printf("Enter your Nick name:");

/* I am reading the input string and storing it in nickname
* Array name alone works as a base address of array so
* we can use nickname instead of &nickname here
*/

scanf("%s", nickname);

/*Displaying String*/

printf("%s" ,nickname);

return O;

Page | 88
|

TECHNOXAMM

Guide for way to Learn

Enter your Nick name:Negan

Negan

Note: %s format specifier is used for strings input/output

Read & Write Strings in C using gets() and puts() functions

#include <stdio.h>

#include <string.h>

int main()

{
/* String Declaration™®/

char nickname[20];

/* Console display using puts */
puts("Enter your Nick name:");
/*Input using gets™/
gets(nickname);

puts(nickname);

return O;

Page | 89
|

TECHNOXAMM

Guide for way to Learn

Enter your Nick name:Negan

Negan

C programming language provides a set of pre-defined functions

called string handling functions to work with string values. The string
handling functions are defined in a header file called string.h.
Whenever we want to use any string handling function we must include
the header file called string.h.

Function Syntax (or) Example Description

strepy() strepy(stringl, string2) Copies string2 value into stringl

strncpy() strncpy(stringl, Copies first 5 characters string2
string?2, 5) into string]
strlen() strlen(string1) returns total number of characters
in stringl

strcat() strcat(stringl,string?) Appends string? to stringl

strncat() strncpy(stringl, Appends first 4 characters of
string?2, 4) string? to string]l

Page | 90
|

TECHNOXAMM

Guide for way to Learn

Function Syntax (or) Example Description

stremp() strcmp(stringl, string2) Returns 0 if stringl and string2
are the same;
less than 0 if stringl<string2;
greater than 0 if string1>string2

strncmp() strncmp(stringl, Compares first 4 characters of
string?2, 4) both string1 and string?2

strempi() strcmpi(stringl,string2) Compares two strings, stringl and
string? by ignoring case (upper or

lower)
stricmp() stricmp(stringl, Compares two strings, stringl and
string?) string? by ignoring case (similar

to strcmpi())

striwr() strlwr(stringl) Converts all the characters of
stringl to lower case.

strupr() strupr(stringl) Converts all the characters of
string]1 to upper case.

strdup() stringl = Duplicated value of string2 is
strdup(string2) assigned to stringl

Page | 91
|

TECHNOXAMM

Guide for way to Learn

Function Syntax (or) Example Description

strchr() strchr(stringl, 'b') Returns a pointer to the first
occurrence of character 'b' in
string |

strrchr() 'strrchr(stringl, 'b') Returns a pointer to the last
occurrence of character 'b' in
string

strstr() strstr(string1, string2) Returns a pointer to the first
occurrence of string? in string1l

strset() strset(string1, 'B") Sets all the characters of stringl
to given character 'B'.

strnset() strnset(stringl, 'B', 5) Sets first 5 characters of stringl to
given character 'B'.

strrev() strrev(stringl) It reverses the value of stringl

The following example uses some of the above-mentioned functions —

Page | 92
|

TECHNOXAMM

Guide for way to Learn

#include <stdio.h>

#include <string.h>

int main () {

char str1[12] = "Hello";
char str2[12] = "World";
char str3[12];

int len ;

/* copy strl into str3 */
strepy(str3, strl);
printf("strcpy(str3, strl) : %s\n", str3);

/* concatenates strl and str2 */
strcat(strl, str2);
printf("strcat(strl, str2): %s\n", strl);

/* total lenghth of strl after concatenation */

Page | 93
|

TECHNOXAMM

Guide for way to Learn

len = strlen(strl);

printf("strlen(strl) : %d\n", len);

return O;

b

strepy(str3, strl) : Hello
strcat(strl, str2): HelloWorld
strlen(strl) : 10

Page | 94
|

TECHNOXAMM

Guide for way to Learn

User Defined Functions

User can define functions to do a task relevant to their programs. Such
functions are called user-defined functions. The main() function in
which we write all our program is a user-defined function. Every
proOgram execution starts at the main() function.

Any function (library or user-defined) has 3 things

1. Function declaration
2. Function calling
3. Function defintion

In case of library functions, the function declaration is in header files.
The function is library files and the calling is in the program. But in
case of user-defined functions all the 3 things are in your source
program. Function declaration:

Syntax:

return data_type function name(arguments list);

Function Definition:
Syntax:
return data_type function name(argument list)

{
Body;

b

Function Calling:
Syntax:
Function name(param_list);

Page | 95
|

TECHNOXAMM

Guide for way to Learn

Formal Arguments:

The arguments which are given at the time of function declaration or
function definition are called formal arguments.

Actual Arguments:

The arguments which are given at the time of function calling are called
actual arguments.

General Form of a Function

return data type function-name(arglist)
argument declaration
{
Local variable declaration;

Executable statements;

return(expression);

h

All parts are not essential. Some may be absent.

For eg: The argument list and it’s associated argument declaration part
are optional.

We may recall that the main functions discussed so far have not
included any arguments.

Page | 96
|

TECHNOXAMM

Guide for way to Learn

return: This statement is for returning a value to the calling function.
This is an optional statement. It’s absence indicates that no value is
being return to the calling function.

Function name: A function must follow the same rules of formation as
other variable names in C. Additional care must be taken to avoid
duplicating library functions names or operating system commands.

Argument list : It contains valid variable name separated by commas.
The list must be surrounded by parenthesis. Note that no semi colon
follows the closing parenthesis. The argument variables receive values
from the calling function. Thus providing a means of data
communication from calling function to the called function.

If the arguments are present before beginning with the statements in the
functions it is necessary to declare the type of arguments through the
type declaration statements.

Note: There are two methods of declaring the parameters. The older
method (known as "classic" method) declares function arguments
separately after the definition of function name (known as function
header).

The newer method (known as '"modern' or ANSI method) combines
the function definition and argument declaration in one line. Luckily the
modern compilers support both the methods. That is, we can write a
function using either of them and execute it successfully.

Page | 97
|

TECHNOXAMM

Guide for way to Learn

#include <stdio.h>

#include <stdlib.h>

int sumNum(int x,int y); //function declaration
int main()

{
int 1,j,sum;

printf(""Please enter 2 numbers for find sum\n");
scanf("%d %d",&1,&;);

sum=sumNum(i,j); //function call

printf("The result of sum is :%d",sum);

getch();

return O;

b

int sumNum(int X, int y)//function definition
{
int result;

result=x+y;

return result; //return statements

b

Page | 98
|

TECHNOXAMM

Guide for way to Learn

Please enter 2 numbers for find sum
34
45

the result of sum is :79

Function Declaration
declaration of the user-defined function.

A function declaration is a frame (prototype)of function that contains
the function’s name, list of parameter and return type and ends with the
semicolon. but it doesn’t,t contain the function body

Syntax

return Type function Name(parameterl,parameter2,......);
Example

Example of the function declaration

int sum_Num(int x, int y,.........);

In the above example, int sumNum(int X, int y); 1s a function declaration
which contains the following information

Every function declaration must contain the following 3 parts and ends
with the semicolon in C language

function name — name of the function is sumNum()
return type — the return type of the function is int

arguments — two arguments of type int are passed to the function

Page | 99
|

TECHNOXAMM

Guide for way to Learn

Calling a function

Syntax
function_Name(Argument list);
Example

sum Num(argument 1, argument 2.,.......);

Function Definition

The function definition is an expansion of function declaration. It
contains codes in the body part of the function for execution program by
the compiler — it contains the block of code for the special task

The syntax of the function definition

return_Type function name(parameter 1, parameter 2,....){
//statements

//body of the function

b

Types of user defined functions in C

We can classify the basic function design by their return values and
their parameters. Function either return a value or they don’t. It may
have parameters or may not. Function with doesn’t return any value is
called void functions. Combining return types and parameters in four
basic designs:

Page | 100
|

TECHNOXAMM

Guide for way to Learn

1) Void functions with no parameter

2) Void functions with no parameters

3) Function with return value and no parameter
4) Function with return value and parameters

Void functions with no parameter

A void function may have no parameter. That function has the only task,
displaying the message. That function doesn’t receive anything from the
caller function and returns nothing back to the caller function.

#include<stdio.h>

float findarea(); //function declaration

int main()

{
findarea(); //function calling
return O;

h

//function to find ara of rectangle

//function definition

float findarea()

{
float length, width, area;
printf("Enter length and width of rectangle: ");

Page | 101
|

TECHNOXAMM

Guide for way to Learn

scanf("%f %f", &length, &width);
area = length * width;

printf("Area of rectangle = %.2f\n",area);

Enter length and width of rectangle: 10 4.23
Area of rectangle = 42.30

The above program calculates the area of a rectangle. One void function
findarea() is defined in the program and it doesn’t receive any data from
the main function.

The function call still requires parentheses, however, even when no
parameters are present. Without the parentheses, it is not a function call.
Because a void function does not have a value, so it can be used only as
a statement, It can’t be used as an expression.

In this type of function, there is no data communication between calling
function and called function, as well as called function and caller
function.

Void functions with parameters

In this type of function, there is data communication between the calling
function and called function but there is no data communication
between the called function and calling function.

Page | 102
|

TECHNOXAMM

Guide for way to Learn

#include<stdio.h>

void findarea(float, float); //function declaration

int main()

{
float length, width;
printf("Enter length and width of rectangle: ");
scanf("%f %f", &length, &width);
findarea(length, width); /function calling
return O;

b

//function to find ara of rectangle

//function definition

void findarea(float 1, float b)

{
float area;
area=1%*b;

printf("Area of rectangle = %.2f\n",area);

}

Enter length and width of rectangle: 12 4.3
Area of rectangle = 51.60

Page | 103
|

TECHNOXAMM

Guide for way to Learn

In this program, there is void function findarea() with parameters. The
function receives two floating-point parameters. It is a void function, so
it can be used only as a statement, It can’t be used as an expression.

Note that the names of the variables in the main function (length and
width) and the name of parameters in function (1 and b) may have the
same names or different names, but their data type must be the same.

User defined Function in C with return value and no parameter

#include<stdio.h>

float findarea(); //function declaration

int main()

{
float result;
result = findarea(); /function calling
printf("Area of rectangle = %.2f\n",result);
return O;

b

//function to find ara of rectangle

//function definition

float findarea()

Page | 104
|

TECHNOXAMM

Guide for way to Learn

printf("Enter length and width of rectangle: ");
scanf("%f %f", &length, &width);
area = length * width;

return area;

Enter length and width of rectangle: 10 3.5
Area of rectangle = 35.00

In this program, one non-void function findarea() is defined which
doesn’t receive any data from the caller function and returns the area of
the rectangle. The function findarea() takes input from the user,
calculates the area and return the area to the caller function.

In this type of design, there is no communication between calling
function and called function. But data communication exists between
called function and calling function.

User-defined Function in C with return value and parameters

Unlike the three designs discussed earlier, in this type two-way data
communication takes place. That is, both the called and calling
functions receive and transfer data from each other. Most of the time we
used this approach.

Page | 105
|

TECHNOXAMM

Guide for way to Learn

#include<stdio.h>
float findarea(float, float); //function declaration
int main()
{
float length, width, result;
printf("Enter length and width of rectangle: ");
scanf("%f %f", &length, &width);
result = findarea(length, width); //function calling
printf(" Area of rectangle = %.2f\n" result);
return O;
h
//function to find ara of rectangle
//function definition
float findarea(float 1, float b)
{
float area;
area=1* b;
return area; //return statement

;

Enter length and width of rectangle: 12.5 5
Area of rectangle = 62.50

Page | 106
|

TECHNOXAMM

Guide for way to Learn

Call by Value and Call by Reference in C
Call by value

In call by value, original value can not be changed or modified. In call
by value, when you passed value to the function it is locally stored by
the function parameter in stack memory location. If you change the
value of function parameter, it is changed for the current function only
but it not change the value of variable inside the caller method such as
main().

#include<stdio.h>

#include<conio.h>

void swap(int a, int b)
{
int temp;
temp=a;
a=b;
b=temp;

}

void main()

Page | 107
|

TECHNOXAMM

Guide for way to Learn

int a=100, b=200;

clrscr();

swap(a, b); // passing value to function
printf("\nValue of a: %d",a);
printf("\nValue of b: %d",b);

getch();

b

Value of a: 200
Value of b: 100

Call by reference

In call by reference, original value is changed or modified because
we pass reference (address). Here, address of the value is passed in
the function, so actual and formal arguments shares the same address
space. Hence, any value changed inside the function, is reflected
inside as well as outside the function.

Page | 108
|

TECHNOXAMM

Guide for way to Learn

#include<stdio.h>
#include<conio.h>
void swap(int *a, int *b)
{
int temp;
temp==*a;
*21::*13;
*b=temp;
h
void main()
{
int a=100, b=200;
clrscr();
swap(&a, &b); // passing value to function
printf("\nValue of a: %d",a);
printf("\nValue of b: %d",b);
getch();

b

Value of a: 200
Value of b;: 100

Page | 109

TECHNOXAMM

Guide for way to Learn

Difference between call by value and call by reference.

call by value call by reference

This method copy original This method copy address of

value into function as a arguments into function as a
arguments. arguments.

Changes made to the Changes made to the
parameter inside the function parameter affect the argument.
have no effect on the Because address is used to
argument. access the actual argument.

Actual and formal arguments Actual and formal arguments
will be created in different will be created in same
memory location memory location

Important points related to Function

. The basic purpose of the function is code reuse.

. From any function we can invoke (call) any another functions.

. Always compilation will be take place from top to bottom.

. Always execution process will starts from main() and ends
with main() only.

. In implementation when we are calling a function which is
define later for avoiding the compilation error we need to for

forward declaration that is prototype is required.

Page | 110
|

TECHNOXAMM

Guide for way to Learn

. In function definition first line is called function declaration or
function header.

. Always function declaration should be match with function
declaratory.

. In implementation whenever a function does not returns any
values back to the calling place then specify the return type.

. Void means nothing that is no return value.

. In implementation whenever a function returns other than void
then specify the return type as return value type that is on e
type of return value it is returning same type of return
statement should be mentioned.

« Default return type of any function is an int.

. Default parameter type of any function is void.

Page | 111
|

TECHNOXAMM

Guide for way to Learn

Pointers in C
Pointers in C language is a variable that stores/points the address of
another variable. A Pointer in C 1s used to allocate memory dynamically
1.e. at run time. The pointer variable might be belonging to any of the
data type such as int, float, char, double, short etc.

e Pointer Syntax : data_type *var name; Example : int *p; char *p;
e Where, * is used to denote that “p” is pointer variable and not a
normal variable.

KEY POINTS TO REMEMBER ABOUT POINTERS IN C:

e Normal variable stores the value whereas pointer variable stores
the address of the variable.

e The content of the C pointer always be a whole number i.e.
address.

e Always C pointer is initialized to null, 1.e. int *p = null.

e The value of null pointer 1s 0.

e & symbol is used to get the address of the variable.

e symbol is used to get the value of the variable that the pointer 1s
pointing to.

e If a pointer in C 1s assigned to NULL, it means it is pointing to
nothing.

e Two pointers can be subtracted to know how many elements are
available between these two pointers.

e But, Pointer addition, multiplication, division are not allowed.

e The size of any pointer is 2 byte (for 16 bit compiler).

Page | 112
|

TECHNOXAMM

Guide for way to Learn

#include <stdio.h>
int main()
{
int *ptr, q;
q=>50;
/* address of q is assigned to ptr */
ptr = &q;
/* display q's value using ptr variable */
printf("%d", *ptr);

return O;

50

Page | 113
|

TECHNOXAMM

Guide for way to Learn

Pointer Notations vs Array Notations

When we say that arrays are treated like pointers in C, we mean the
following:

e The array variable holds the address of the first element in the
array. It isn’t a pointer but it does act like a constant pointer that
cannot be changed.

e Programs often interact with arrays using pointer notation instead
of array notation.

// initialize an array of ints
int numbers[5] = {1,2,3,4,5};

// standard array notation
int *ptrl = numbers;
int vall = numbers[0];

// address of array notation
int *ptr2 = &numbers[0];
int val2 = *(&numbers[0]);

// pointer + increment notation
int *ptr3 = numbers + 0;
int val3 = *(numbers + 0);

// print out the address stored in the pointers
printf("*ptrl = %p\n", (void *)ptrl);
printf("*ptr2 = %p\n", (void *)ptr2);

Page | 114
|

TECHNOXAMM

Guide for way to Learn

printf("*ptr3 = %p\n", (void *)ptr3);

// print out the value at the pointer addresses
printf("vall = %d\n", vall);
printf("val2 = %d\n", vall);
printf("val3 = %d\n", vall);

*ptrl = Ox7fffébelde60
*ptr2 = Ox7fffébelde6b0
*ptr3 = Ox7fffébeldeb0

vall=1
val2=1
val3=1

We declare an int array with 5 ints and assign the array numbers
variable to our int pointer, ptrl. The numbers variable holds the address
of the first element in the array. Assigning it to ptrl numbers is treated
as an pointer. We then get the value of the first element in the array

using array notation.

In the second example we get the address of the first element in the
array using array notation and then we get the value of the first element
by dereferencing the address of the of the first element in the array.

Page | 115
|

TECHNOXAMM

Guide for way to Learn

In the third example we use pointer math to assign the first address of
the first element in the array and we dereference the same address to get

the value.

// initialize an array of ints
int numbers[5] = {1,2,3,4,5};
inti=0;

// print out elements using array notation
for(1=0;1<5;1++) {
int value = numbers|[i];
printf("numbers[%d] = %d\n", 1, value);

b

// print out elements using pointer math + array indexing (yuck!)
for(1=0;1<5;1++) {

int value = *(numbers + 1);

printf("*(numbers + %d) = %d\n", 1, value);

b

// print out elements using a single pointer
int *ptr = numbers;
for(1=0;1<5;1++) {

int value = *ptr++;

printf("%d, *ptr++ = %d\n", 1, value);

b

Page | 116
|

TECHNOXAMM

Guide for way to Learn

numbers[0] =1
numbers[1] =2
numbers[2] =3
numbers[3] =4
numbers[4] =5
*(numbers + 0) = 1
*(numbers + 1) =2
*(numbers + 2) =3
*(numbers + 3) =4

*(numbers +4) =5

0, *ptr++ =1
1, *ptr++ =2
2, *ptr++=13

Array notation is pointer arithmetic. The C standard defines that
numbers[0] 1is just syntactic sugar for *(numbers + 0). Anytime you
write array notation such as numbers[2] the compiler switches that to
*(numbers + 2), where numbers 1s the address of the first element in the
array and + 2 increments the address through pointer math.

// initialize an array of ints

int numbers[5] = {1,2,3,4,5};
int numbers2[5] = {6,7,8,9,0};
int *ptr = numbers2;

Page | 117

TECHNOXAMM

Guide for way to Learn

int *ptr = numbers2;

// this won't compile
numbers = numbers2;
numbers = &numbers2;
numbers = ptr;

incompatible types when assigning to type ‘int[5]” from type ‘int *’

incompatible types when assigning to type ‘int[5]” from type ‘int
(ST

incompatible types when assigning to type ‘int[5]” from type ‘int *’

Even though the array varible holds the address to the first element in
the array, it acts like as a constant pointer in that it cannot be changed. It
cannot be assigned a different array or a pointer to a different array.
Think about it, if you have a variable A that points to an array and you
were able to change the address of A to something else, what happens to
the memory pointed to by the A array.

// initialize an array of ints

int numbers[5] = {1,2,3,4,5};
int numbers2[5] = {6,7,8,9,0};
int *ptr] = numbers;

int *ptr2 = numbers2;

// this will compile
ptrl = ptr2;

Page | 118
|

TECHNOXAMM

Guide for way to Learn

// print the addresses

printf("numbers = %p\n", (void *)numbers);
printf("numbers2 = %p\n", (void *)numbers2);
printf("ptrl = %p\n", (void *)ptrl);
printf("ptr2 = %p\n", (void *)ptr2);

numbers = 0x7{ff5ea3d230
numbers2 = 0x7{ff5ea3d250
ptrl = 0x7{ff5ea3d250

ptr2 = 0x7{ff5ea3d250

Even though we can’t change the array variable directly, we can have a
pointer to the array and then change that pointer. Here we create two
arrays and two int pointers. We assign the numbers variable to ptrl and
numbers2 variable to ptr2. We then assign ptr2 to ptrl. Finally we print
the output we can see that ptrl and ptr2 are both pointing to the first
element of the numbers2 array.

Page | 119
|

TECHNOXAMM

Guide for way to Learn

Structures

C Structure is a collection of different data types which are grouped
together and each element in a C structure 1s called member.

e If you want to access structure members in C, structure variable
should be declared.

e Many structure variables can be declared for same structure and
memory will be allocated for each separately.

e [t is a best practice to initialize a structure to null while declaring,
if we don’t assign any values to structure members.

struct student
i
Int a;
char b[10];
Syntax }
a=10;
Example b = “Hello”;

BELOW TABLE EXPLAINS FOLLOWING CONCEPTS IN C
STRUCTURE.

1. How to declare a C structure?
2. How to 1nitialize a C structure?
3. How to access the members of a C structure?

Page | 120
|

TECHNOXAMM

Guide for way to Learn

Using normal variable

Using pointer variable

Syntax: Syntax:
struct tag name struct tag name
d d

data type var_namel;
data type var name2;
data type var_name3;

55

data type var_namel;
data type var name2;
data type var name3;

55

Example: Example:
struct student struct student
{ {

int mark; int mark;

char name[10];
float average;

55

char name[10];
float average;

55

Declaring structure
using normal variable:
struct student report;

Declaring structure
using pointer variable:
struct student *report,

Iep,

Initializing structure
using normal variable:
struct student report =
{100, “Mani”, 99.5};

Initializing structure
using pointer variable:
struct student rep = {100,
“Mani”, 99.5};

report = &rep;

Accessing
structure members

Accessing
structure members

Page | 121

TECHNOXAMM

Guide for way to Learn

using normal variable: using pointer variable:
report.mark; report -> mark;
report.name; report -> name;
report.average; report -> average;

#include <stdio.h>
#include <string.h>

struct student
{
int id;
char name[20];
float percentage;

55

int main()

{

struct student record = {0}; //Initializing to null

record.id=1;
strcpy(record.name, "Raju");
record.percentage = 86.5;

printf(" Id is: %d \n", record.1d);

printf(" Name is: %s \n", record.name);

printf(" Percentage is: %f \n", record.percentage);
return O;

Page | 122
|

TECHNOXAMM

Guide for way to Learn

Id is: 1
Name is: Raju
Percentage is: 86.500000

ANOTHER WAY OF DECLARING C STRUCTURE:

#include <stdio.h>

#include <string.h>

struct student

{
int 1d;
char name[20];
float percentage;

} record;

int main()

{
record.id=1;
strcpy(record.name, "Raju");
record.percentage = 86.5;
printf(" Id is: %d \n", record.1d);
printf(" Name 1s: %s \n", record.name);
printf(" Percentage 1s: %f \n", record.percentage);
return O;

b

Page | 123
|

TECHNOXAMM

Guide for way to Learn

Id is: 1
Name is: Raju
Percentage is: 86.500000

USES OF STRUCTURES IN C:

e C Structures can be used to store huge data. Structures act as a
database.
C Structures can be used to send data to the printer.

C Structures can interact with keyboard and mouse to store the
data.

C Structures can be used in drawing and floppy formatting.
e C Structures can be used to clear output screen contents.
e (C Structures can be used to check computer’s memory size etc.

Page | 124
|

TECHNOXAMM

Guide for way to Learn

Unions, Typedef and Enumeration
Unions

Union is an user defined datatype in C programming language. It is a
collection of variables of different datatypes in the same memory
location. We can define a union with many members, but at a given
point of time only one member can contain a value. Unions can be very
handy when you need to talk to peripherals through some memory
mapped registers.

Difference between structure and union
The main difference between structure and a union is that

e Structs allocate enough space to store all of the fields in the struct.
The first one is stored at the beginning of the struct, the second is
stored after that, and so on.

e Unions only allocate enough space to store the largest field listed,
and all fields are stored at the same space .

Syntax for Declaring a C union
union union_name
{ datatype field name;
datatype field name; // more variables
3

To access the fields of a union, use dot(.) operator i.e., the variable
name followed by dot operator followed by field name.

Page | 125
|

TECHNOXAMM

Guide for way to Learn

#include <stdio.h>

union item

{
int a;
float b;
char ch;

£

int main()

{
union item it;
it.a=12;
1t.b =20.2;

it.ch="z";

printf("%d\n", it.a);
printf("%f\n", it.b);
printf("%c\n", it.ch);

return 0;

Page | 126
|

TECHNOXAMM

Guide for way to Learn

-26426
20.1999

z

Typedef

In C programming language, typedef is a keyword used to create alias
name for the existing datatypes. Using typedef keyword we can create a
temporary name to the system defined datatypes like int, float, char and
double. we use that temporary name to create a variable. The general
syntax of typedef is as follows : -

typedef <existing-datatype> <alias-name>

typedef can be used to give a name to user defined data type as well.
Lets see its use with structures.

typedef struct

{
type memberl;
type member2;
type member3;

} type name;

type name tl, t2;

Page | 127
|

TECHNOXAMM

Guide for way to Learn

#include<stdio.h>

#include<string.h>

typedef struct employee
1
char name[50];

int salary;

yemp;

void main()
d
emp el;
printf("\nEnter Employee record:\n");
printf("\nEmployee name:\t");
scanf("%s", el.name);
printf("\nEnter Employee salary: \t");
scanf("%d", &el.salary);
printf("\nstudent name is %s", el.name);

printf("\nroll is %d", el.salary);

Page | 128
|

TECHNOXAMM

Guide for way to Learn

Enumeration

Enumeration (enum) is a user-defined datatype (same as structure). It
consists of various elements of that type. There is no such specific use
of enum, we use it just to make our codes neat and more readable. We
can write C programs without using enumerations also.

An enum is defined in the same way as structure with the
keyword struct replaced by the keyword enum and the elements
separated by 'comma' as follows.

enum enum_name
{
elementl,
element2,
element3,
element4,

s
We also declare an enum variable in the same way as that of structures.
We create an enum variable as follows.

cnum Scason

{

Summer,
Spring,
Winter,
Autumn

55

Page | 129
|

TECHNOXAMM

Guide for way to Learn

cnum Scason S,

b

So, here 's' 1s the variable of the enum named season. This variable will
represent a season. We can also declare an enum variable as follows.

enum season {
Summer,
Spring,
Winter,
Autumn

§s;

#include <stdio.h>

enum season{ Summer, Spring, Winter, Autumn};

int main()

{
enum season s;
s = Spring;
printf("%d\n",s);

return O;

Page | 130
|

TECHNOXAMM

Guide for way to Learn

Here, first we defined an enum named 'season' and declared its variable
's' in the main function as we have seen before. The values of Summer,
Spring, Winter and Autumn are 0, 1, 2 and 3 respectively. So, by
writing s = Spring, we assigned a value 'l' to the variable 's' since the
value of 'Spring' is 1.

#include <stdio.h>

enum days{ sun, mon, tue = 5, wed, thurs, fri, sat};

int main()

{
enum days day;
day = thurs;
printf("%d\n",day);

return O;

7

The default value of 'sun' will be 0, 'mon' will be 1, 'tue' will be 2 and so
on. In the above example, we defined the value of tue as 5. So the
values of 'wed', 'thurs', 'fri' and 'sat' will become 6, 7, 8 and 9
respectively. There will be no effect on the values of sun and mon
which will remain 0 and 1 respectively. Thus the value of thurs 1.e. 7
will get printed.

Page | 131
|

TECHNOXAMM

Guide for way to Learn

#include <stdio.h>

enum days{ sun, mon, tue, wed, thurs, fri, sat};

int main()

{
enum days day;
day = thurs;
printf("%d\n",day+2);

return 0;

In this example, the value of 'thurs' 1.e. 4 1s assigned to the variable day.
Since we are printing 'day+2' i.e. 6 (=4+2), so the output will be 6.

Page | 132
|

TECHNOXAMM

Guide for way to Learn

Pre Processor Commands

The C pre-processor is a macro pre-processor (allows you to define
macros) that transforms your program before it is compiled. These
transformations can be the inclusion of header file, macro expansions
ete.

C Macros

A macro 1s a segment of code which is replaced by the value of macro.
Macro is defined by #define directive. There are two types of macros:

Object-like Macros

e Function-like Macros
e Object-like Macros

The object-like macro is an identifier that is replaced by value. It is
widely used to represent numeric constants. For example:

#define PI 3.14

Here, PI is the macro name which will be replaced by the value 3.14.
Function-like Macros

The function-like macro looks like function call. For example:
#define MIN(a,b) ((a)<(b)?(a):(b))

Here, MIN i1s the macro name.

C Predefined Macros

ANSI C defines many predefined macros that can be used in ¢ program.

Page | 133
|

TECHNOXAMM

Guide for way to Learn

Description

1| _DATE | represents current date in" MMM DD YYYY"
format.

2| _TIME | represents current time in "HH:MM:SS" format.

3| _FILE represents current file name.

4| LINE represents current line number.

5| _STDC | TItisdefined as 1 when compiler complies with the
ANSI standard.

#include<stdio.h>

int main(){
printf("File :%s\n", FILE);
printf("Date :%s\n", DATE);
printf("Time :%s\n", TIME);
printf("Line :%d\n", LINE);
printf("STDC :%d\n", _ STDC__);

return 0;

b

File :simple.c
Date :Dec 6 2015
Time :12:28:46
Line :6

STDC :1

Page | 134
|

TECHNOXAMM

Guide for way to Learn

C #include

The #include preprocessor directive is used to paste code of given file
into current file. It is used include system-defined and user-defined
header files. If included file is not found, compiler renders error.

By the use of #include directive, we provide information to the
preprocessor where to look for the header files. There are two variants
to use #include directive.

1. #include <filename>
2. #include "filename"

The #include <filename> tells the compiler to look for the directory
where system header files are held. In UNIX, it is \usr\include directory.

#include<stdio.h>

int main(){
printf("Hello C");

return O;

b

Hello C
C# define

The #define preprocessor directive is used to define constant or micro
substitution. It can use any basic data type.

Page | 135
|

TECHNOXAMM

Guide for way to Learn

Syntax:

#define token value

#include <stdio.h>
#define PI 3.14
main() {
printf("%f",PI);
b

3.140000

C #undef

The #undef preprocessor directive is used to undefine the constant or
macro defined by #define.

Syntax:
#undef token

#include <stdio.h>

#define PI 3.14

#undef PI

main() {
printf("%f",PI);

'
Page | 136
|

TECHNOXAMM

Guide for way to Learn

Compile Time Error: 'PI' undeclared

#include <stdio.h>

#define number 15

int square=number*number;
#undef number

main() {

printf("%d",square);

b

225

Page | 137
|

TECHNOXAMM

Guide for way to Learn

File Handling

A File can be used to store a large volume of persistent data. Like many
other languages 'C' provides following file management functions,

1. Creation of a file
2. Opening a file

3. Reading a file

4. Writing to a file
5. Closing a file

Function Purpose

fopen () | Creating a file or opening an existing file

fclose () | Closing a file

fprintf () | Writing a block of data to a file

fscanf () | Reading a block data from a file

getc () Reads a single character from a file

putc () | Writes a single character to a file

getw () | Reads an integer from a file

putw () | Writing an integer to a file

fseek () | Sets the position of a file pointer to a specified location

ftell () Returns the current position of a file pointer

rewind () | Sets the file pointer at the beginning of a file

Page | 138
|

TECHNOXAMM

Guide for way to Learn

Create a File

Whenever you want to work with a file, the first step is to create a file.
A file is nothing but space in a memory where data is stored.To create a
file in a 'C' program following syntax is used,

FILE *fp;

fp = fopen ("file name", "mode");

In the above syntax, the file is a data structure which is defined in the
standard library. fopen is a standard function which is used to open a
file.

. If the file is not present on the system, then it is created and then
opened.

. If afile is already present on the system, then it is directly opened
using this function.

fp 1s a file pointer which points to the type file.

Whenever you open or create a file, you have to specify what you are
going to do with the file. A file in 'C' programming can be created or
opened for reading/writing purposes. A mode 1s used to specify whether
you want to open a file for any of the below-given purposes. Following
are the different types of modes in 'C' programming which can be used
while working with a file.

In the given syntax, the filename and the mode are specified as strings
hence they must always be enclosed within double quotes.

Page | 139
e

TECHNOXAMM

Guide for way to Learn

File Mode Description

r Open a file for reading. If a file is in reading mode, then no
data is deleted if a file is already present on a system.

w Open a file for writing. If a file is in writing mode, then a new
file 1s created if a file doesn't exist at all. If a file is already
present on a system, then all the data inside the file is
truncated, and it 1s opened for writing purposes.

a Open a file in append mode. If a file is in append mode, then
the file is opened. The content within the file doesn't change.

r+ open for reading and writing from beginning

w+ open for reading and writing, overwriting a file

a+ open for reading and writing, appending to file
#include <stdio.h> #include <stdio.h>
int main() { int main() {
FILE *fp; FILE *fp;
fp = fopen ("data.txt", "w"); fp = fopen ("D://data.txt", "w");
b b

Page | 140
|

TECHNOXAMM

Guide for way to Learn

Close a file

One should always close a file whenever the operations on file are over.
It means the contents and links to the file are terminated. This prevents
accidental damage to the file.'C' provides the fclose function to perform
file closing operation. The syntax of fclose is as follows,

fclose (file pointer);

Example:

FILE *fp;
fp = fopen ("data.txt", "r");
fclose (fp);

The fclose function takes a file pointer as an argument. The file
associated with the file pointer is then closed with the help of fclose
function. It returns 0 if close was successful and EOF (end of file) if
there is an error has occurred while file closing.

After closing the file, the same file pointer can also be used with other
files.

Writing to a File

In C, when you write to a file, newline characters "\n' must be explicitly
added.

The stdio library offers the necessary functions to write to a file:

Page | 141
|

TECHNOXAMM

Guide for way to Learn

. fputc(char, file pointer): It writes a character to the file pointed
to by file pointer.

. fputs(str, file_pointer): It writes a string to the file pointed to by
file pointer.

. fprintf(file_pointer, str, variable lists): It prints a string to the
file pointed to by file pointer. The string can optionally include
format specifiers and a list of variables variable lists.

fputc

#include <stdio.h>
int main() {
int 1;
FILE * fptr;
char fn[50];
char str[] = "TechnoXamm Rocks\n";
fptr = fopen("fputc_test.txt", "w"); / "w" defines "writing mode"
for (1= 0; str[i] !="\n"; 1++) {
/* write to file using fputc() function */
fputc(str[i], fptr);
b
fclose(fptr);

return 0;

Page | 142
|

TECHNOXAMM

Guide for way to Learn

fputs

#include <stdio.h>

int main() {
FILE * fp;
fp = fopen("fputs_test.txt", "w+");
fputs("This 1s C Tutorial on fputs,", fp);
fputs("We don't need to use for loop\n", fp);
fputs("Easier than fputc function\n", {p);
fclose(fp);
return (0);

h
fprint

#include <stdio.h>

int main() {
FILE *fptr;

fptr = fopen("fprintf test.txt", "w"); // "w" defines "writing
mode"

/* write to file */

fprintf(fptr, "Learning C with TechnoXamm\n");
fclose(fptr);

return O;

} Page | 143

TECHNOXAMM

Guide for way to Learn

Reading data from a File
There are three different functions dedicated to reading data from a file

. fgetc(file pointer): It returns the next character from the file
pointed to by the file pointer. When the end of the file has been
reached, the EOF 1is sent back.

. fgets(buffer, n, file_pointer): It reads n-1 characters from the file
and stores the string in a buffer in which the NULL character \0' is
appended as the last character.

. fscanf(file pointer, conversion_specifiers, variable adresses): It
is used to parse and analyze data. It reads characters from the file
and assigns the input to a list of variable pointers variable adresses
using conversion specifiers. Keep in mind that as with scanf, fscanf
stops reading a string when space or newline is encountered.

#include <stdio.h>

int main() {
FILE * file pointer;
char buffer[30], c;

file pointer = fopen("fprintf test.txt", "r");
printf("----read a line----\n");

fgets(buffer, 50, file pointer);
printf("%s\n", buffer);

Page | 144
|

TECHNOXAMM

Guide for way to Learn

printf("----read and parse data----\n");
file pointer = fopen("fprintf test.txt", "r"); //reset the pointer
char str1[10], str2[2], str3[20], str4[2];
fscanf(file pointer, "%s %s %s %s", strl, str2, str3, str4);
printf("Read Stringl |%s[\n", strl);
printf("Read String2 |%s|\n", str2);
printf("Read String3 |%s[\n", str3);
printf("Read String4 |%s[\n", str4);

printf("----read the entire file----\n");

----read a line----

Learning C with TechnoXamm

----read and parse data----
Read Stringl |Learning]
Read String?2 |C]

Read String3 |with|

Read String4 |TechnoXamm|

----read the entire file----

Page | 145
|

TECHNOXAMM

Guide for way to Learn

Interactive File Read and Write with getc and putc

These are the simplest file operations. Getc stands for get character, and
putc stands for put character. These two functions are used to handle
only a single character at a time.

#include <stdio.h>
int main() {
FILE * fp;
char c;
printf("File Handling\n");
//open a file
fp = fopen("demo.txt", "w");
//writing operation
while ((c = getchar()) != EOF) {
putc(c, fp);
h
//close file
fclose(fp);
printf("Data Entered:\n");
//reading
fp = fopen("demo.txt", "r");
while ((c = getc(fp)) != EOF) {

Page | 146
|

TECHNOXAMM

Guide for way to Learn

printf("%c", ¢);

h
fclose(fp);

return O;

¢ In the above program we have created and opened a file called
demo in a write mode.

o After a write operation is performed, then the file is closed using
the fclose function.

e We have again opened a file which now contains data in a reading
mode. A while loop will execute until the eof 1s found. Once the
end of file 1s found the operation will be terminated and data will
be displayed using printf function.

e After performing a reading operation file is again closed using the
fclose function.

Page | 147
|

TECHNOXAMM

Guide for way to Learn

Command Line Arguments

Command line arguments are nothing but simply arguments that are
specified after the name of the program in the system’s command line,
and these argument values are passed on to your program during
program execution.

Components of Line Arguments

In order to implement command line arguments, generally, 2 parameters
are passed into the main function:

1. Number of command line arguments

2. The list of command line arguments

The basic syntax is:

int main(int argc, char *argv[]) int main(int argc, char **argv[])
{ {

// BODY OF THE MAIN // BODY OF THE MAIN
FUNCTION FUNCTION

h h

Page | 148
|

TECHNOXAMM

Guide for way to Learn

e argc: It refers to “argument count™. It is the first parameter that we
use to store the number of command line arguments. It is important
to note that the value of argc should be greater than or equal to O.

e agrv: It refers to “argument vector”. It is basically an array of
character pointer which we use to list all the command line
arguments.

// The program name is cl.c
#include<stdio.h>
int main(int argc, char** argv)

{

printf("Welcome to DataFlair tutorials!\n\n");

Int 1;
printf("The number of arguments are: %d\n",argc);
printf("The arguments are:");

for (1= 0;1<argc; i++)

1
printf("%s\n", argv[i]);

b

return O;

b

Page | 149
|

TECHNOXAMM

Guide for way to Learn

Dynamic Memory Allocation

The process of allocating memory at runtime is known as dynamic
memory allocation. Library routines known as memory management
functions are used for allocating and freeing memory during execution
of a program. These functions are defined in stdlib.h header file.

Function Description

allocates requested size of bytes and returns a void
pointer pointing to the first byte of the allocated space

malloc()

allocates space for an array of elements, initialize
calloc() [them to zero and then returns a void pointer to the
memory

free releases previously allocated memory

realloc |modify the size of previously allocated space

Global variables, static variables and program instructions get their
memory in permanent storage area whereas local variables are stored
in a memory area called Stack.

The memory space between these two region is known as Heap area.
This region is used for dynamic memory allocation during execution of
the program. The size of heap keep changing.

Page | 150
|

TECHNOXAMM

Guide for way to Learn

Local Variable]. Stack
Free memory]' Heap
Global wvariable
Permanent
Progranm Storage
Instructions g
area
static
variable

Allocating block of Memory

malloc() function is used for allocating block of memory at runtime.
This function reserves a block of memory of the given size and returns
a pointer of type void. This means that we can assign it to any type of
pointer using typecasting. If it fails to allocate enough space as
specified, it returns a NULL pointer.

Syntax:

void* malloc(byte-size)

int *x;

x = (Int*)malloc(50 * sizeof(int)); //memory space allocated to
variable x

free(x); //releases the memory allocated to variable x

Page | 151
-

TECHNOXAMM

Guide for way to Learn

calloc() is another memory allocation function that is used for allocating
memory at runtime. calloc function is normally used for allocating
memory to derived data types such as arrays and structures. If it fails
to allocate enough space as specified, it returns a NULL pointer.

Syntax:

void *calloc(number of items, element-size)

struct employee
{
char *name;
int salary;
s
typedef struct employee emp;

emp *el;

el = (emp*)calloc(30,sizeof(emp));

realloc() changes memory size that is already allocated dynamically to a
variable.

Syntax:

void* realloc(pointer, new-size)

Page | 152
|

TECHNOXAMM

Guide for way to Learn

Int *x;

x = (int*)malloc(50 * sizeof(int));

x = (int*)realloc(x,100); //allocated a new memory to variable x

Diffrence between malloc() and calloc()

calloc() malloc()

calloc() initializes the allocated |malloc() initializes the allocated

memory with 0 value. memory with garbage values.
Number of arguments is 2 Number of argument is 1
Syntax : Syntax :

(cast_type *)calloc(blocks ,

size of block): (cast_type *)malloc(Size in bytes);

Page | 153
|

TECHNOXAMM

Guide for way to Learn

Linked List

Linked lists are the best and simplest example of a dynamic data
structure that uses pointers for its implementation. However,
understanding pointers is crucial to understanding how linked lists
work, so if you've skipped the pointers tutorial, you should go back and
redo it. You must also be familiar with dynamic memory allocation and
structures.

Essentially, linked lists function as an array that can grow and shrink as
needed, from any point in the array.

Linked lists have a few advantages over arrays:

1. Items can be added or removed from the middle of the list
2. There 1s no need to define an initial size

However, linked lists also have a few disadvantages:

1. There i1s no "random" access - it 1s impossible to reach the nth item
in the array without first iterating over all items up until that item.
This means we have to start from the beginning of the list and
count how many times we advance in the list until we get to the
desired item.

2. Dynamic memory allocation and pointers are required, which
complicates the code and increases the risk of memory leaks and
segment faults.

3. Linked lists have a much larger overhead over arrays, since linked
list items are dynamically allocated (which is less efficient in
memory usage) and each item in the list also must store an
additional pointer.

Page | 154
|

TECHNOXAMM

Guide for way to Learn

Linked List

A linked list is a set of dynamically allocated nodes, arranged in such a
way that each node contains one value and one pointer. The pointer
always points to the next member of the list. If the pointer is NULL,
then it is the last node in the list.

A linked list 1s held using a local pointer variable which points to the
first item of the list. If that pointer is also NULL, then the list is
considered to be empty.

10 | @—> 20 | @—> 30

Linked List

Let's define a linked list node:

typedef struct node {
int val;
struct node * next;

} node t

Notice that we are defining the struct in a recursive manner, which is
possible in C. Let's name our node type node t.

Now we can use the nodes. Let's create a local variable which points to
the first item of the list (called head).

Page | 155
|

TECHNOXAMM

Guide for way to Learn

node t * head = NULL;
head = (node t *) malloc(sizeof(node t));
if (head == NULL) {

return 1;

}

We've just created the first variable in the list. We must set the value,
and the next item to be empty, if we want to finish populating the list.
Notice that we should always check if malloc returned a NULL value or
not.

To add a variable to the end of the list, we can just continue advancing
to the next pointer:

node t * head = NULL;

head = (node _t *) malloc(sizeof(node t));
head->val = 1;

head->next = (node t *) malloc(sizeof(node t));
head->next->val = 2;

head->next->next = NULL;

Page | 156
|

TECHNOXAMM

Guide for way to Learn

Iterating over a list

Let's build a function that prints out all the items of a list. To do this, we
need to use a current pointer that will keep track of the node we are
currently printing. After printing the value of the node, we set

the current pointer to the next node, and print again, until we've reached
the end of the list (the next node is NULL).

void print_list(node t * head) {

node t * current = head;

while (current != NULL) {
printf("%d\n", current->val);

current = current->next;

!
Adding an item to the end of the list

To iterate over all the members of the linked list, we use a pointer
called current. We set it to start from the head and then in each step we
advance the pointer to the next item in the list until we reach the last
item.

void push(node t * head, int val) {
node t * current = head;
while (current->next != NULL) {

current = current->next;

Page | 157
|

TECHNOXAMM

Guide for way to Learn

Adding an item to the beginning of the list (pushing to the list)
To add to the beginning of the list, we will need to do the following:

1. Create a new item and set its value
2. Link the new item to point to the head of the list
3. Set the head of the list to be our new item

This will effectively create a new head to the list with a new value, and
keep the rest of the list linked to it.

Since we use a function to do this operation, we want to be able to

modify the head variable. To do this, we must pass a pointer to the
pointer variable (a double pointer) so we will be able to modify the
pointer itself.

void push(node t ** head, int val) {
node t * new_node;

new_node = (node_t *) malloc(sizeof(node_t));

new_node->val = val;
new_node->next = *head;

*head = new_node;

Page | 158
|

TECHNOXAMM

Guide for way to Learn

Removing the first item (popping from the list)
To pop a variable, we will need to reverse this action:

1. Take the next item that the head points to and save it
2. Free the head item
3. Set the head to be the next item that we've stored on the side

int pop(node t ** head) {
int retval = -1;

node t * next node = NULL;

if (*head == NULL) {
return -1;

h

next node = (*head)->next;

retval = (*head)->val;

free(*head);

*head = next node;

return retval;
)

Removing the last item of the list
Removing the last item from a list is very similar to adding it to the end
of the list, but with one big exception - since we have to change one

Page | 159
|

TECHNOXAMM

Guide for way to Learn

item before the last item, we actually have to look two items ahead and
see if the next item 1s the last one in the list:

int remove_last(node t * head) {
int retval = 0;
/* 1f there 1s only one item in the list, remove it */
if (head->next == NULL) {
retval = head->val;
free(head);
return retval;
h
/* get to the second to last node in the list */
node t * current = head;
while (current->next->next = NULL) {
current = current->next;

b

/* now current points to the second to last item of the list, so
let's remove current->next */

retval = current->next->val;
free(current->next);
current->next = NULL;

return retval;

}
Page | 160
|

TECHNOXAMM

Guide for way to Learn

Removing a specific item

To remove a specific item from the list, either by its index from the
beginning of the list or by its value, we will need to go over all the
items, continuously looking ahead to find out if we've reached the node
before the item we wish to remove. This 1s because we need to change
the location to where the previous node points to as well.

Here is the algorithm:

1. Tterate to the node before the node we wish to delete

2. Save the node we wish to delete in a temporary pointer

3. Set the previous node's next pointer to point to the node after the
node we wish to delete

4. Delete the node using the temporary pointer

int remove by index(node t ** head, int n) {
inti=0;
int retval = -1;
node t * current = *head;
node t* temp node = NULL;
if (n==0) {
return pop(head);
h
for 1=0;1<n-1;it+) {
if (current->next == NULL) {

Page | 161
|

TECHNOXAMM

Guide for way to Learn

return -1;

b

current = current->next;

b

temp node = current->next;
retval = temp node->val;
current->next = temp _node->next;

free(temp node);

return retval;

Page | 162

